Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как прогнозировать продажи

Прогнозирование продаж товаров с нерегулярным спросом по методу BRT*

Прогнозирование продаж и спроса с использованием информационных технологий уже не является чем-то необычным. Современные ИТ-решения позволяют без труда обрабатывать большие массивы данных, высчитывать всевозможные статистические показатели продаж – простые и экспоненциальные – на основе которых и формируются прогнозы большинства компаний.

Методы прогнозирования продаж

Методы средних позволяют достаточно точно спрогнозировать продажи товаров с регулярным спросом, дают возможность учета выбросов, сезонных факторов. Однако в случае, когда речь идет о товарах с нерегулярным спросом, данные методы не обеспечивают должного уровня точности прогнозов.

Спрогнозировать спрос на товары с нерегулярным спросом на больших промежутках времени (квартал, полугодие, год) не составит особого труда, но прогноз теряет свою точность в случае горизонта планирования «неделя-месяц».

Как правило, учитывая высокую стоимостьтоваров с нерегулярным спросом, достаточно сложно определить оптимальный уровень обеспеченности складских запасов по данным позициям и принять решение о закупке с избытком. ABC и XYZ-анализ этих товаров также не дает ответа на ключевой вопрос.

  • Сколько товара с нерегулярным спросом надо приобрести для поддержания разумного уровня сервиса?

Чрезмерные запасы дорогостоящих товаров с нерегулярным спросом приведут, в лучшем случае, к «закапыванию» в склад большого объема оборотных средств, которые могли быть использованы для других целей. Или к образованию «мёртвых остатков» или неликвидов – в случае, когда речь идет о товарных позициях, коллекции которых обновляются ежегодно: дорогой электроинструмент, крупная бытовая техника премиум-класса, предметы люксовой категории, продаваемые наряду с обычными позициями.

В то же время, недостаток таких товаров на складе существенно сокращает возможную прибыль от продаж, так как прибыль от продажи одной единицы дорогостоящего товара порой может превышать прибыль от продажи типового товара в десятки раз.

Пример прогнозирования продаж по методу BRT

Предположим, что данные о продажах такого товара можно представить в следующей таблице:

Допустим, время поставки товара с момента его заказа у поставщика до прихода на склад составляет четыре дня, а текущий остаток на складе – 1 штука. Количество проданных наименований в заданный период – 30 штук.

  • В каком количестве необходимо произвести закупку товара сейчас с учетом срока поставки товара?

При расчете на основе средних продаж мы бы получили значение средней реализации товара в размере: 30 штук/31 дней = 0,97 штуки в день, а объем продаж за время поставки составил бы около 4 единиц, точнее 0,97 штуки*4 дня = 3,9 штуки.

Имея в наличии одну единицу товара, мы можем предположить, что нам нужно заказывать еще три штуки для пополнения запасов. Однако анализ продаж показывает, что реализация пяти штук товара и более не является такой уж необычной ситуацией. И при закупке всего трех штук товара мы не сможем удовлетворить спрос и лишим себя продажи.

  • Сколько же товара надо держать на складе и какой уровень сервиса можно гарантировать клиентам в этой ситуации, чтобы обеспечить удовлетворение максимального спроса, не потратив излишних денег на большие закупки?

Проведенный выше анализ на основе расчета средних продаж не отвечает на эти вопросы.

Поэтому для прогнозирования нерегулярных продаж крайне важно использовать специальные методы, позволяющие производить анализ нерегулярных событий. Сравнительно недавно стали разрабатываться методы на основе так называемой Bootstrapping-статистики. Одним из таких методов, используемых при анализе нерегулярных и разреженных рядов, является метод под названием Bootstrapping Reaction Time (BRT)*.

Отличие BRT-метода от расчета средних состоит в определении наиболее вероятного объема продаж за период поставки заказа, а не расчета среднего дневного объема продаж. В нашем случае этот период поставки составляет четыре дня.

  • Какой вариант прогноза продаж наиболее приемлем, исходя из имеющихся данных?

Для поиска ответа составим таблицу всех возможных вариантов на основании имеющихся данных. Для этого разбиваем наш ряд по порядку на периоды реакции (сроки поставки заказа): сначала с 1 по 4 день, потом с2 по 5, потом с 3 по 6 и т.д. – всего 28 возможных вариантов.

В крайней правой колонке мы получили множество вариантов того, какой объем товара может быть продан за выбранный промежуток времени (четыре дня) — получили разброс от 0 до 11 штук. Как понять, какое из этих значений наиболее отвечает нашим требованиям? Для этого составим частотную гистограмму – она покажет, как часто одно или другое значение встречается в выборке:

  • Скольким клиентам наша компания готова обеспечить безусловную доступность товара?

Под «безусловной доступностью» будем понимать следующую ситуацию: если у нас в среднем покупают по 10 штук ежедневно, но был случай, что кто-то купил 100 штук, то «безусловная доступность» означает, что у нас на складе должно быть в наличие 100 штук товара.

Высокий уровень доступности товара означает, что вы можете предоставить клиентам более высокий уровень обслуживания, но при этом на вашем складе хранится большое количество товара.

Отсутствие товара на складе – низкий уровень доступности – означает, что мы закупаем меньше товаров впрок, но снижаем и качество сервиса, не имея возможности отгрузить товар клиенту вовремя.

  • Какой процент клиентов мы можем обслужить – продать товар, отбросив фактор наличия на складе?

Как правило, это значение колеблется в районе 80-91%. Для нашего примера остановимся на уровне доступности – 80%. Оставшихся клиентов – 20% — мы «отбрасываем», считая, что для них мы не готовы хранить большие запасы товара на складе и не будем учитывать в плане закупок.

Что эти цифры означают для нашего анализа? Это означает, что на основании нашей гистограммы требуется определить максимальное значение объема продаж таким образом, чтобы суммарная частота спроса на меньшие объемы продаж была максимально приближена к выбранному нами уровню доступности.

В управленческой логике это можно интерпретировать следующим образом: мы должны выбрать возможный максимум спроса, который возникнет у 80 из 100 наших клиентов за выбранное время реакции (срока поставки заказа).

Для нашей выборки это значение равняется 8 штукам, что покроет требование 21 из 28 возможных исходов (если бы мы выбрали уровень доступности 70/10, то это было бы значение 5 штук, что покрывало бы 20 возможных исходов из 28 возможных).

В управленческой логике, найденное нами значение в 8 штук можно интерпретировать следующим образом: при обслуживании 8 из 10 клиентов, в течение 4 дней они купят суммарно меньше 8 штук товара, а закупка будет равняться 8 – 1 = 7 штук. Этот результат существенно отличается от значения, полученного при расчете «простой средней».

Таким образом, метод BRT дает более точную и обоснованную аналитику для товаров, которые должны находиться в доступности для клиентов, даже в том случае, если их покупают достаточно редко, но с некоторым постоянством.

В данной статье приведен пример всего для одной позиции. В случае, когда фигурируют несколько точек продаж и несколько тысяч номенклатурных позиций, провести BRT-анализ в ручном режиме невозможно.

Поэтому для прогнозирования продаж применяются специализированные решения — системы управления запасами. В настоящее время все более популярным становится использование программного обеспечения в виде удаленного сервиса или SaaS-приложений для анализа и прогнозирования запасов.

Управление запасами для малого бизнеса

«КОРУС Консалтинг» предлагает услугу по анализу запасов с использованием BRT-метода прогнозирования продаж. Сервис ориентирован на малый и средний бизнес и может использоваться удаленно через интернет на условиях ежемесячной подписки.

Дешевизна сервиса позволяет получить доступ к современным средствам прогнозирования продаж и анализа запасов компаниям, которые ранее не могли позволить себе подобные решения из-за их высокой стоимости владения.

Задайте вопрос эксперту на нашем сайте или по телефону: + 7 (495) 647-50-46, + 7 (812) 677-56-90.

*BRT — Bootstrapping Reaction Time. Слово «bootstrapping» пришло из поговорки «pull oneself over a fence by one’s bootstraps», что почти буквально соответствует нашему «вытащить себя за собственные волосы».

Прогноз плана продаж

Без прогноза какую-либо предпринимательскую деятельность – в т. ч. и торговлю – невозможно начать. К примеру, вы хотите открыть веломагазин – после обустройства торговой площадки, её заключительной подготовки и завоза велотехники и велоаксессуаров вы планируете как можно скорее распродать. Предположим, завезено в общей сложности 500 велосипедов разных марок и моделей для взрослых – а вам нужно продать их за неделю, велосезон ведь уже начался. Какова будет ваша ценовая политика? Что вы противопоставите вашим конкуретам – по качеству, ценникам, возможностям купить в рассрочку и т. д.? Какие запчасти к этим велосипедам у вас будут продаваться? Как пойдёт ваш план по продажам в ближайший месяц, квартал, за весь велосезон с апреля по октябрь включительно? На эти вопросы вам и даст ответ ваше умение прогнозировать рост продаж.

Businessman using telescope and stock market graph

Как спрогнозировать продажи?

Вопрос, как прикинуть продаваемость ваших товаров на ближайшие недели и месяцы, звучит иначе: каковы методы прогнозирования продаж? За ответом обратимся к докторам наук торгово-предпринимательских университетов, профессорам, академикам. А также к личному опыту миллионов предпринимателей по всему миру.

Эти методы разделяются на:

  • экспертные оценки;
  • анализ и прогнозирование временных рядов;
  • причинно-следственные связи.

В первом случае оценивается сегодняшняя ситуация и перспективы на завтра. Второй – опирается на изучение заранее предопределённой и спонтанной составляющих, независимо друг от друга. Третий – поиск причин, влияющих на поведение определённого показателя.

Управленческий прогноз

Перечисленные выше методы прогнозирования имеют под собой общую основу – управленческий прогноз продаж. Верхушкой системы здесь всегда является общий прогнозируемый объём продаж.

Чтобы пояснить эту схему на конкретном примере, вначале отметим, что управленческий прогноз – это всегда древовидная структура, из которой и складывается общий прогноз продаж. Она является наиболее значимой в жизненном цикле любого магазина, оптового склада, гипермаркета, рынка торговых точек, наконец. Наглядно – покажем это на доходах компании, продающей, скажем, отделочные материалы и сантехнику. Сантехника продаётся для офисов и домов. Для домов сантехника продаётся в целях ремонта — и для обустройства новых инженерных коммуникаций при строительстве. На продажи сантехники влияют следующие факторы:

  • доля жилья эконом-класса;
  • сезонность;
  • среднестатистический ценник на комплекты сантехники для каждой эконом-квартиры;
  • средняя квадратура эконом-квартиры;
  • объём жилстроительства по эконом- и элитному классам в общем потоке;
  • доля жилья эконом-класса.
Читайте также:  Относится ли компания к малым и на какие льготы может рассчитывать

Из вышеприведённого примера следует, что управленческий прогноз не идёт в отрыве от одного определённого фактора. Невнимание к такому фактору может поставить под угрозу рост прогнозируемых продаж.

Линейный прогноз

Суть линейного метода прогнозирования продаж сводится к следующему. Это, по сути, расчёт планируемого объёма продаж по дням, невзирая на предыдущий, более всеобъемлющий метод.

Например, сотовый провайдер Yota в Ростове-на-Дону, на Пойменной, 1, продал 1 ноября 2019 г. 120 SIM-карт с новым тарифом «Для смартфонов». 2-го он продал 200, 3-го -40, 4-го – 100, 5-го – 140 SIM-карт. За 5 дней – 600. Разумно предположить, что за весь ноябрь, — салон работает каждый день, — он может продать 36000 SIM-карт всем желающим. Это и есть линейный прогноз. Но в реальности объём продаж, скорее всего, упадёт, — несмотря на то, что безлимитный трафик у Yota самый дешёвый – 410 р. Продать они могут не 36000 SIM-карт, а, скажем, 15000 – насыщение рынка в районе этой точки продаж уже случилось.

Вдруг, 2 ноября, Yota предоставляет скидку – безлимитный трафик продаётся не за 410, а за 290 р. – по старой цене 2015-2017 гг. Что будет? Продажи подстегнутся – Yota в этом салоне продаст 50000 SIM-карт за ноябрь. Причём бум продаж придётся именно на первые дни – а не будет разгоняться постепенно. Затем продажи пойдут на спад. Потому что все всем расскажут, что Yota снизила тариф. Это уже линейно-управленческий прогноз: в дело вступил новый фактор – снижение расценок на безлимитный Интернет. Параллельно, происходит отток клиентов, которым нужен самый дешёвый безлимит, а не пакеты трафика – у «Билайна», «МегаФона», «МТС» и «Теле2». Рынок абонентов-«безлимитчиков» перерассредоточился.

Формула прогноза продаж

Для расчёта прогноза продаж применяются общая, линейная и управленческая формулы. Они дают наиболее исчерпывающую картину прогнозирования объёма продаж в рамках конкретного магазина.

Формула линейного прогноза продаж

Эта формула рассчитывается крайне просто:

Считаем среднее арифметическое по единицам товара (как в примере выше, с SIM-картами провайдера Yota) за несколько дней, например, неделю.

Умножаем среднее арифметическое на количество недель в месяце, квартале или в году.

Это и есть месячный (квартальный, годовой) план, которого придерживается любая компания. Выполнил план – компания окупилась и принесла искомый доход. Перевыполнил – идеально: доход превзошёл все ожидания. Не выполнил – для компании на данном направлении образуется кризис, который надо покрывать за следующий период, а именно предпринять следующее:

Переключиться на другие направления и виды товаров, чтобы «отбить» образовавшиеся долги, или заполнить «прибыльную яму»;

Уценить и перепродать товар (со скидкой, за полцены и т. д. – объявив распродажу).

Существует и нечестный метод – попытаться выдать товар за похожий, но новый. Но такой способ не рекомендуют.

Формула управленческого прогноза продаж

В управленческом расчёте не всё так просто, как в линейном. Здесь показатели не все суммируются – они могут и перемножаться. Не каждый из них равен единице – на расчетное значение выйти зачастую в срок нельзя.

Здесь на помощь приходит нелинейный прогноз. Важно отталкиваться от кривых прогнозируемого роста продаж. Кривая прогнозируемых продаж может быть как степенной, так и полиномиальной (движение кривой по дугам разных окружностей, устремлённым лишь вперёд). Линейный рост уже не используется. Кривая может как проседать, так и резко стремиться вверх – при срабатывании таких факторов, как:

  • курсы валют;
  • погода, условия доставки;
  • цены конкурентов на аналогичный товар, их динамика;
  • качество товаров одних (или похожих) видов, которыми вы и ваши конкуренты торгуете;
  • планы розничных и оптовых покупателей.

Во всех случаях – и в линейном, и в управленческом прогнозе – важно определить тренды, продвигаемые вами. Тренд – это усреднённая прямая, вокруг которой претерпевает подъёмы и спады кривая ваших реальных (в прошлом) и прогнозируемым (с завтрашнего дня) продаж. Если тренд вдруг пошёл вниз – пересмотрите свои подходы к прогнозированию.

Итак, формула управленческого прогноза продаж – прежде всего, отношение сумм и произведений показателей, влияющих на динамику данного прогнозирования.

Прогноз продаж в Excel

Прежде чем привести определённые примеры таблиц, нелишне отметить, какие функции могут использоваться для прогноза продаж в Excel.

Например, в Excel 2007 дайте команду «Формулы» — «Финансовые». Список финансовых формул представляет наибольшую ценность для любых экономических расчётов. С их помощью несложно рассчитать деятельность практически любой коммерческой организации. Однако бывают случаи, когда требуются и математические формулы: так, для тренда есть понятие линейного, логарифмического, гиперболического и т. д.

Но самое главное – построение графиков по табличным значениям. Так прогноз выглядит убедительней.

Пример прогноза продаж

В качестве примера – расчёт прогноза продаж на неделю, месяц, квартал и год.

Прогноз продаж на неделю

Примером служит следующий расчёт. Например, фермер реализует в городе с 50000 человек населения молоко каждый день. Не все его хотят брать, т. к. многим проще после работы заехать в тот же «Магнит» и закупиться. Берут в основном пенсионеры и те, что ушли в отпуск или в декрет.

Значения, по которым рассчитаны график продаж и тренда, позволяют отследить не только за неделю проданный в данной точке товар, но и за весь месяц. Для расчёта линейного тренда используется такая же функция – график y=ax+b. Это алгебраическое уравнение 1-й степени, известное нам чуть ли не с третьего класса.

Прогноз продаж на месяц

Обратимся всё к тому же графику. Здесь также ясна ещё одна истина: если прямая тренда вдруг превратиться в горизонталь – это точка безубыточности. Работать безрезультатно – только лишь, чтобы выйти «в нули», ни один уважающий себя коммерсант не станет, только если есть ощутимая прибыль. Если же эта линия станет опускаться – серьёзный сигнал к тому, что пора реорганизовываться, либо закрывать фирму (или предприятие). Очень часто причиной понижения тренда становится обилие конкурентов, сумевших реализовать продажи быстрее и лучше, санкции со стороны регулирующих органов, общий обвал фондовых рынков и несколько иных весомых причин.

Более достоверный прогноз на месяц можно получить, используя данные за месяцы предыдущего года. Ваш опыт и история подскажут с большой вероятностью, будет ли тренд компании идти вверх. Для развивающегося предприятия, давно перешедшего границу стартапа, используется всё та же формула y=ax+b, где Y – объём продаж, X – порядковый номер очередного интервала, A – поднятие каждого последующего значения в ряду времени, B – минимальная грань. Последовательность действий будет следующей.

Значение Y для каждого искомого периода позволит подставить подсчитанные коэффициенты в само уравнение.

Далее рассчитывается отклонение значений реальных продаж от значений тренда.

Сезонность подсчитывается как частное от деления реального объёма продаж за этот же период на среднее значение объёма.

При прогнозировании роста продаж за будущий месяц без учёта сезонности не обойтись. Для этого величину тренда умножают на показатель сезонности первого месяца будущего года. При этом выходит расчётный объём продаж в новом интервале. Используя этот подход, можно прикинуть, какими продажи придутся на остальные месяцы нового года.

В любом случае, при выводе плана по продажам не обойтись без сечения, подробностей плана – по времени, каналам сбыта, контингенту покупателей, группам, к которым относятся конкретные товары, а также по определённым менеджерам. Чем больше подробностей – тем более реальными будут запланированные продажи.

Прогноз продаж на квартал

Здесь можно воспользоваться реальной картиной по продажам за предыдущие кварталы этого и прошлого годов.

Усложнять нелинейными расчётами свои прогнозы зачастую не имеет смысла, если факторов, влияющих на вашу деятельность, не так много. Широкую популярность линейные расчёты обрели лишь в годы индустриализации СССР: целью следующей пятилетки было превысить показатели предыдущей на сколько-то десятков процентов.

Сейчас объёмы деятельности, включая продажи, могут быть практически неограниченными: большим успехом считается превышение планов в десятки раз.

Примером расчёта продаж на квартал служит всё тот же веломаркет – например, велосипедный отдел в «Спортмастере». Каким будет прогноз на 2-й и 3-й квартал – в велосезон, когда тепло с апреля по май и в сентябре, и жарко летом? Естественно, продажи велосипедов могут подскочить несколько раз – с апреля, или в канун отпусков (в июле). Подскакивают продажи велосипедов и в конце сентября – когда велосезон заканчивается, и веломаркеты объявляют о распродажах моделей байков, выходящих из моды после истечения этого года, за, скажем, 70% от цены.

Прогноз продаж на год

Для расчёта прогноза продаж на год лучший результат дают предыдущие факты за прошедший период хотя бы в 2-3 года. С одного прошлого года прогноз на весь грядущий год составить куда сложнее. Может потребоваться криволинейная функция. Однако тренд всегда описывается строго и чётко – по закону прямой.

Прогнозирование продаж: точный расчет или гадание на кофейной гуще?

Прогнозирование продаж: точный расчет или гадание на кофейной гуще? Когда мы строили систему в компании-девелопере Урбан Групп, коммерческий директор, Дмитрий Усманов, задал вопрос, — подпишемся ли мы под конкретной цифрой. Мы назвали цифру, дату и время.

Через три недели в 12.15 мы сидели в кафе и наблюдали за графиком поступлений. В 12.00 разносятся приходы за последний день. Точность прогноза составила 99,7%.

Самый частый вопрос, который задают нам клиенты: «Как вы можете так точно рассчитать будущий объем продаж?».

Все дело в кофе) Нет, не в том, по которому можно узнать судьбу вашего бизнеса, а в том, которое мы выпиваем, пока решаем задачу прогнозирования для каждого конкретного предприятия.

Читайте также:  Основы теории инвестиционного анализа

Не стоит путать прогнозы объема продаж, основанные на детальных расчетах, с ненаучной ворожбой. Давайте рассмотрим, как составить максимально точный прогноз продаж и какие задачи он решает.

Для чего нужен прогноз продаж?

1. Постановка целей. Полученная по годовому прогнозу цифра – то, к чему компания должна прийти на следующий год, тот план, который необходимо выполнить. Это часть бизнес-плана для предприятия и реальная, четко просчитанная цель для отдела продаж, от которой можно отталкиваться при начислении премий и бонусов. Очень часто цель ставится из желаний, а не из реальных возможностей.
Поэтому перед тем как поставить цель необходимо сначала сделать прогноз, а потом устанавливать цель. Если цель выше прогноза, то нужно понимать за счет каких изменений цель будет выполнена.

2. Формирование необходимой базы трудовых и производственных ресурсов. Исходя из прогнозного количества клиентов и объема продаж. Задача: запланировать закупки и определить будущие потребности компании в оборудовании и персонале.

3. Управление складскими запасами. В каждый момент времени в распоряжении производства будет находиться складской остаток, достаточный для выполнения задач на определенном этапе. Никакого дефицита или избытка материалов на складе – только рациональное расходование средств!

4. Повышение мобильности бизнеса. На прогнозном графике (или в таблице) можно заблаговременно увидеть моменты возможного проседания объема продаж (например, из-за сезонности продукта) и предпринять меры для корректировки ситуации еще до окончания периода. Кроме того, повышаются шансы мгновенно отследить незапланированный спад продаж, оперативно выявить причины снижения показателей и своевременно исправить ситуацию.

5. Контроль и оптимизация расходов. Прогнозирование покажет, какие затраты в целом понесет компания на производство и реализацию продукции. А значит, можно разработать бюджет и заблаговременно определить, какие издержки подлежат сокращению в случае неисполнения прогноза по увеличению объема продаж.

Методы прогнозирования и как они работают

Существует 3 основных группы методов:

1. Метод экспертных оценок. Базой для них является субъективная оценка определенной группы экспертов, которые имеют свое видение текущей ситуации и перспектив развития. В роли внутренних экспертов выступают руководители компаний и топ-менеджеры. Внешними экспертами могут быть привлеченные консультанты и финансовые аналитики.

Эту методику выбирают при отсутствии большого количества статистических данных, например, когда компания выводит на рынок новый товар или услугу. Эксперты оценивают проблему, основываясь на интуиции и логике. Обобщенное мнение специалистов и становится прогнозом. Метод очень сильно зависит от опыта эксперта в отрасли. Иногда это лучший способ прогнозирования. И тут нет ничего общего с гаданием. Интуиция это вычисления нашего мозга, которые человек не может отследить. Главное уметь очистить интуицию от предрассудков.

Пример.

«Мозговой штурм» – коллективный метод экспертной оценки, в котором принимают участие начальники отделов продаж, маркетинга, производства и логистики. Каждый по очереди озвучивает факторы, которые могут положительно или отрицательно повлиять на будущие продажи. Прогноз формируется по сводному перечню выдвинутых идей.

Но нужно учитывать что каждый из участников будет иметь свои интересы. Продажникам нужно занизить план, чтобы потом геройски его выполнить. Маркетологам завысить чтобы показать перспективы рынка. Производству сократить ассортимент до 1 единицы и сформировать ровный график, логистике не нужны пики и спады.

2. Методы анализа и прогнозирования временных рядов. Оптимальный вариант для предприятия, накопившего базу данных по продажам за несколько лет. Для упрощенного прогнозирования можно воспользоваться стандартной программой Excel. В ней составляется таблица с ежемесячным объемом продаж в каждом году, и на основе этой таблицы выстраивается график.

График показывает основной тренд (повышение или снижение объемов продаж), а также сезонные колебания. Остается экстраполировать кривую на месяц, на год или любой другой период времени. Можно расширить этот метод следующим пунктом.

3. Казуальные (причинно-следственные) методы. Они учитывают зависимость уровня продаж от одной или нескольких переменных. Для построения адекватной модели необходимо знать независимые факторы, которые влияют на спрос.
Что это за факторы? Доходы населения, цены конкурентов, эффективность рекламы, объемы производства смежных областей – то есть все, что определяет поведение потребителей.

Пример.

Компания реализует сантехнику. Первый фактор – объемы строительства в регионе. Они в прошлом году снизились на 15%, объемы продаж сантехники упали на 10%. В следующем году кризис в строительной сфере продолжится, значит, упадут и продажи унитазов, раковин и ванн. Второй фактор – реклама. Как показал опыт сантехнической компании в прошлые периоды, увеличение расходов на рекламу на 10% увеличивает продажи на 20%. И так далее по каждому фактору влияния.

Итоговый показатель рассчитывается с помощью многофакторного уравнения, в котором каждая переменная протестирована и выверен ее уровень значимости.

Выбор метода зависит от того, какие исходные данные есть в наличии. Самое эффективное решение – сочетание нескольких методов.

Следует учитывать, что прогнозирование величины продаж лучше работает в краткосрочном периоде, и не из-за каких-то особенностей расчета, а потому что на уровне бизнеса практически невозможно предсказать изменение внешних политических и экономических условий. Вспомните, кто был готов к кризису 2008? А к санкциям из-за ситуации на Украине?

Как рассчитать прогноз продаж – чек-лист для бизнеса

Посмотрите, какой алгоритм прогнозирования используем мы, перед тем как гарантировать своим клиентам увеличение объема продаж на 20-200%:

  • Анализируем результаты деятельности предприятия за предыдущий период. Берем ежемесячные или еженедельные данные за три предыдущих года. Для нового товара, у которого отсутствует история продаж, используем методы экспертной оценки – основываемся на опыте наших специалистов, работавших с аналогичным бизнесом, опрашиваем внешних экспертов и изучаем конкурентов.

На этом же этапе исходя из предоставленных сведений мы определяем эластичность спроса, чтобы понять, насколько сильно объем продаж зависит от повышения/понижения цены, если они были за эти периоды Каждый экстремум на графике наход объяснение путем анализа страктуры оборота. Какие клиенты купили больше или меньше, почему, что повлияло. В 99 % случаев ответы находятся без особых усилий.

  • Определяем тренд рынка. Прогнозировать увеличение продаж продукции можно только в том случае, если общий тренд рынка является растущим или хотя бы стабильным. Увидеть текущие тенденции можно в ЯндексВордстате – мы набираем запрос, соответствующий продукту клиента, и изучаем график.

Если кривая спроса неуклонно снижается и нет никаких данных о скором окончании кризиса в этой отрасли, на рост продаж рассчитывать не стоит. однако можно попытаться удержаться на текущем уровне., кризис вечным не бывает. И если вы сохраните за собой долю рынка, в момент подъема у вас будет лучший старт, чем у конкурентов.

  • Учитываем сезонность предлагаемого товара/услуги. Если есть сведения по прошлым продажам – отлично! Если нет, есть простой способ выяснить наличие или отсутствие сезонных колебаний – воспользоваться все тем же графиком по динамике запросов.


Посмотрите, как четко видны сезонные колебания по запросу «кровельные материалы»: летние пики и зимние провалы. Для товаров и услуг, спрос на которые отличается ярко выраженной сезонностью, нужно рассчитать коэффициент сезонности по каждому плановому периоду.

Пример.

Компания продает мягкую кровлю в рулонах. В апреле прошлого года было реализовано 100 рулонов, а уже в июне – 176 рулонов. В апреле этого года компания реализовала 124 рулона, сколько рулонов будет продано в июне? Простая задачка для начальной школы решается в одно действие: 176/100*124=218 рулонов (где 176/100=1,76 – коэффициент сезонности). Аналогично можно сделать расчет коэффициента в целом по рынку.

  • Оцениваем актуальное УТП. Например при продаже квартиры мы оцениваем УТП компании по 32 параметрам, каждой характеристике присваиваем вес и четко понимаем силу нашего предложения. Качество уникального торгового предложения серьезно влияет на конверсию. После конкурентного анализа мы можем сказать, какой будет конверсия на сайте для конкретного бизнеса – 2% или все 10%. Если доработать откровенно слабое УТП и четко прописать его в рекламных объявлениях, можно в разы увеличить количество обращений
  • Тестируем эффективность рекламы по каждому каналу продаж. Для офлайн-магазинов можно запустить тестовую рекламную кампанию в газетах, на телевизионных каналах региона. Для интернет-магазинов – размещаем таргетированную рекламу в соцсетях или контекстные объявления в Яндекс.Директ (GoogleAdwords). Каждому рекламному каналу присваиваем свой номер телефона или любой другой маркер, позволяющий определить, что именно сработало.

Пример.

Компания реализует металлические двери в двух магазинах в своем городе и интернет-магазине с доставкой по области. Реклама в газетах представляет собой купон с 5% скидкой, который нужно предъявить при обращении. В контекстной рекламе размещаем телефон и отслеживаем количество поступивших по нему звонков. Одна реклама увеличила количество клиентов на 10%, а вторая не сработала? Используем эту информацию для планирования и прогнозирования.

  • Анализируем клиентскую базу по физическим и юридическим лицам, среднему чеку, регулярности закупок. Берем статистику по уже завершенным сделкам, вычисляем средний чек для каждой группы клиентов. Мы уже выяснили, сколько новых покупателей принесет нам реклама. Умножаем их количество на средний чек и получаем прогнозный объем продаж.

В расчете будущих объемов продаж для сегмента B2B есть свои особенности. Как правило, это не разовые клиенты, а постоянные деловые партнеры, которые будут покупать товары в течение всего года. Соответственно, кроме среднего чека нужно определить периодичность поставок. Потенциал можно оценить по базам 2gis.ru.

  • Проверяем, как работают менеджеры по продажам. Прослушиваем, как менеджеры работают с обращениями. Если по итогам общения с потенциальным клиентом менеджер не смог довести его до заказа, нужно составить эффективные скрипты телефонных разговоров и провести обучение персонала. В результате, из 10 обращений до покупки дойдетне 1 клиент, а, 3.

Когда мы составляем прогноз роста продаж, мы используем именно этот чек-лист, дополняя или видоизменяя его в зависимости от вида бизнеса. Как видите, в нем встречаются элементы всех трех методик. По каждой гипотезе дается оценка, но их совокупность обеспечивает высокую точность прогноза.

Читайте также:  Как избавиться от кредитной зависимости?

Мы можем гарантировать максимально точное прогнозирование при условии, что клиент сначала предоставляет нам как можно большее количество исходных данных, а потом четко реализуются все внедрения. Мы проведем аудит любого бизнеса и точно определим объем на который способен Ваш бизнес и не обижайтесь если он будет в несколько раз Ваше текущего

Прогнозирование продаж в Excel и алгоритм анализа временного ряда

Прогнозирование продаж в Excel не сложно составить при наличии всех необходимых финансовых показателей.

В данном примере будем использовать линейный тренд для составления прогноза по продажам на бушующие периоды с учетом сезонности.

Линейный тренд хорошо подходит для формирования плана по продажам для развивающегося предприятия.

Excel – это лучший в мире универсальный аналитический инструмент, который позволяет не только обрабатывать статистические данные, но и составлять прогнозы с высокой точностью. Для того чтобы оценить некоторые возможности Excel в области прогнозирования продаж, разберем практический пример.

Пример прогнозирования продаж в Excel

Рассчитаем прогноз по продажам с учетом роста и сезонности. Проанализируем продажи за 12 месяцев предыдущего года и построим прогноз на 3 месяца следующего года с помощью линейного тренда. Каждый месяц это для нашего прогноза 1 период (y).

Уравнение линейного тренда:

y = bx + a

  • y — объемы продаж;
  • x — номер периода;
  • a — точка пересечения с осью y на графике (минимальный порог);
  • b — увеличение последующих значений временного ряда.

Допустим у нас имеются следующие статистические данные по продажам за прошлый год.

  1. Рассчитаем значение линейного тренда. Определим коэффициенты уравнения y = bx + a . В ячейке D15 Используем функцию ЛИНЕЙН:
  2. Выделяем ячейку с формулой D15 и соседнюю, правую, ячейку E15 так чтобы активной оставалась D15. Нажимаем кнопку F2. Затем Ctrl + Shift + Enter (чтобы ввести массив функций для обеих ячеек). Таким образом получаем сразу 2 значения коефициентов для (a) и (b).
  3. Рассчитаем для каждого периода у-значение линейного тренда. Для этого в известное уравнение подставим рассчитанные коэффициенты (х – номер периода).
  4. Чтобы определить коэффициенты сезонности, сначала найдем отклонение фактических данных от значений тренда («продажи за год» / «линейный тренд»).
  5. Рассчитаем средние продажи за год. С помощью формулы СРЗНАЧ.
  6. Определим индекс сезонности для каждого месяца (отношение продаж месяца к средней величине). Фактически нужно каждый объем продаж за месяц разделить на средний объем продаж за год.
  7. В ячейке H2 найдем общий индекс сезонности через функцию: =СРЗНАЧ(G2:G13).
  8. Спрогнозируем продажи, учитывая рост объема и сезонность. На 3 месяца вперед. Продлеваем номера периодов временного ряда на 3 значения в столбце I:
  9. Рассчитаем значения тренда для будущих периодов: изменим в уравнении линейной функции значение х. Для этого можно просто скопировать формулу из D2 в J2, J3, J4.
  10. На основе полученных данных составляем прогноз по продажам на следующие 3 месяца (следующего года) с учетом сезонности:

Общая картина составленного прогноза выглядит следующим образом:

График прогноза продаж:



Алгоритм анализа временного ряда и прогнозирования

Алгоритм анализа временного ряда для прогнозирования продаж в Excel можно построить в три шага:

  1. Выделяем трендовую составляющую, используя функцию регрессии.
  2. Определяем сезонную составляющую в виде коэффициентов.
  3. Вычисляем прогнозные значения на определенный период.

Нужно понимать, что точный прогноз возможен только при индивидуализации модели прогнозирования. Ведь разные временные ряды имеют разные характеристики.

Чтобы посмотреть общую картину с графиками выше описанного прогноза рекомендуем скачать данный пример:

Как прогнозировать продажи

Есть одна очень распространенная проблема: владельцы бизнеса часто боятся заглядывать вперед и прогнозировать продажи. Но не стоит следовать их примеру. И проблема в данном случае даже не в отсутствии специальных знаний для этого и не в необходимости создания электронной таблицы, в которой нужно указать единицы товара и цены на них.

Прогноз продаж — не о том, что нужно заглядывать в будущее

Процесс прогнозирования объема сбыта намного легче, чем вы думаете, и намного полезнее, чем вы себе представляете. Это не предположение о том, что произойдет в будущем. Это ожидания + контроль + управление.

Необходимо анализировать и регулярно пересматривать свой прогноз продаж. Так как продажи непосредственно связаны с издержками и расходами, прогноз помогает контролировать бюджет. К тому же у вас для этого имеется информация по количеству продуктов, объемам и каналам сбыта, и все это, как и в любом другом предприятии, измеряется бизнес-результатами.

Вы должны тем более ориентироваться на прогнозы, если продаете новый продукт или открыли новый бизнес без конкретных данных за прошлые годы. Однако в любом случае прогноз по объемам сбыта точно не предскажет будущее. Это понятно с самого начала. То, что вы должны сделать — определить драйверы продаж и выявить взаимозависимости, то есть соединить точки соприкосновения таким образом, чтобы можно было легко исправить курс своего поведения в продажах.

Если вы думаете, что прогнозирование объемов сбыта трудно, попытайтесь управлять бизнесом без каких-либо прогнозов. Это намного сложнее. Дело в том, что ваш прогноз по объемам сбыта — основа и фундамент бизнес-плана. Предприниматели измеряют рост бизнеса продажами, и ваш прогноз объема сбыта устанавливает норму для расходов, прибыли и роста. Прогноз по продажам почти всегда будет первым набором чисел, которые вам придется отслеживать согласно бизнес-плану.

Прогнозирование продаж, анализ фактических результатов, внесение корректив — это уже фактически бизнес-планирование.

Прогнозирование продаж — простая математика

Для бизнес-плана сделайте свой прогноз по продажам на ближайшие 12 месяцев и на два года после этого. Представьте его в виде таблицы с колонками. Укажите количество единиц товара, цену за них, а затем посчитайте, каким должен быть результат по продажам.

Если вы продаете не товары, а услуги, то можете просто прогнозировать продажи по проектам или обязательствам — так, как это делают адвокаты, бухгалтера и другие профессионалы, чья деятельность связана с консалтингом.

Как узнать, какая цифра должна скрываться в прогнозах объема реализации?

Математика может быть простой, но то, что касается прогнозирования будущего, люди делают недостаточно хорошо. Не пытайтесь предсказать будущее точно в течение многих месяцев заранее. Вместо этого стремитесь к пониманию того, что стимулирует продажи: может быть, это интернет-трафик или какие-то преобразования? Рассмотрите ситуацию на нескольких примерах. Фиксируйте результаты анализа данных каждый месяц и корректируйте прогнозы. Ваши предположения станут более точными со временем.

Опыт как огромное преимущество

Рассмотрим пример с владельцем магазина велосипедов, у которого уже есть опыт в продажах. Он не разбирается в бухгалтерском учете и не разбирается в прогнозировании как технологии, но зато хорошо знает свой магазин и велосипедный бизнес. Он в курсе всех изменений, происходящих на рынке, и существующих способов продвижения бизнеса. А потому он делает компетентные предположения.

Если лично у вас нет опыта, попытайтесь найти информацию и сделать прогнозы на основе опыта своих сотрудников, коллег, инвесторов и других людей, с которыми вы обсуждаете проблемы индустрии.

Используйте прошлые результаты в качестве гида

Используйте результаты недалекого прошлого, если они есть у вашего бизнеса. Сравнивайте свежие цифры с данными предыдущих лет и делайте соответствующие выводы.

Быть может, у вас появились новые возможности, которые стимулируют рост продаж? Или вы стали проводить новые маркетинговые кампании? Появились новые конкуренты и новые проблемы? Никто не хочет прогнозировать снижение продаж, но, если такая ситуация возможна, вы должны уметь правильно на нее реагировать — сокращать издержки и менять фокус.

Ищите драйверы

Чтобы спрогнозировать продажи для нового ресторана, нужна схема расположения столов и стульев, чтобы оценить наполняемость заведения и предположить количество заказов в ситуации, когда ресторан работает на полную мощь. Это будет не случайное число, а показатель того, сколько гостей в принципе может обслужить заведение за время работы.

Чтобы предположить уровень продаж нового мобильного приложения, можно воспользоваться данными по количеству загрузок близких по тематике приложений. В принципе вы можете воспользоваться любой информацией из достоверных источников в интернете, из блогов, отраслевых новостей, которые рассказывают о состоянии и трендах рынка приложений.

Взгляните на имеющиеся данные и подумайте о том, как в вашем случае они могут отличаться. Возможно, вы, зная уровень трафика на своем сайте, сможете предположить, каков процент его посетителей загрузит приложение.

Оцените прямые затраты

Прямые затраты важны, поскольку они помогают рассчитать прибыль, которая учитывается в качестве основания для сравнения данных в финансовых документах и указывает на уровень доходности бизнеса. Но не у всех компаний есть прямые затраты. В частности, у сервисных компаний (адвокатских контор, например) обычно нет прямых затрат, таким образом, их прибыль составляет 100%.

Чтобы сформировать нормальный прогноз продаж, нужно учесть информацию по количеству единиц товара, цены, затраты на единицу товара и т.д.

Никогда не стройте прогнозы спонтанно

Никогда не занимайтесь прогнозированием объемов сбыта в отрыве от реальности. Прогнозы вытекают из стратегических планов с их предположениями, этапами и метриками. Маркетинговая деятельность тесно связана с продажами, так же, как и каждый этап бизнес-планирования.

Вы, конечно, будете менять этапы, потому что все бизнес-планы меняются — и вам, конечно, придется корректировать свой прогноз объемов сбыта, чтобы одно другому соответствовало.

Опирайтесь на свои прогнозы

Прогнозирование объема сбыта — это история не о точном предположении того, что произойдет в будущем. Это история о том, что, делая предположения, вы можете эффективно управлять изменениями — продажами, прямыми затратами. И то какие-то показатели могут отличатся от тех, что вы ожидали. Используйте эту информацию, чтобы совершенствовать бизнес, корректируя курс и отказываясь от неэффективных методов ведения бизнеса.

Все самое интересное о бизнесе — на нашем канале в Telegram. Присоединяйтесь!

Ссылка на основную публикацию